
Package: BGmisc (via r-universe)
September 16, 2024

Title An R Package for Extended Behavior Genetics Analysis

Version 1.3.2

Description The BGmisc R package offers a comprehensive suite of
functions tailored for extended behavior genetics analysis,
including model identification, calculating relatedness,
pedigree conversion, pedigree simulation, and more.

License GPL-3

URL https://github.com/R-Computing-Lab/BGmisc/,

https://r-computing-lab.github.io/BGmisc/

BugReports https://github.com/R-Computing-Lab/BGmisc/issues

Depends R (>= 3.5.0)

Imports data.table, igraph, kinship2, Matrix, stats, stringr

Suggests dplyr, EasyMx, knitr, OpenMx, rmarkdown, testthat (>= 3.0.0),
tidyverse

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.1

Repository https://r-computing-lab.r-universe.dev

RemoteUrl https://github.com/r-computing-lab/bgmisc

RemoteRef HEAD

RemoteSha 0c3a7b39a88ab8af073dc804d358ba003475b550

1

https://github.com/R-Computing-Lab/BGmisc/
https://r-computing-lab.github.io/BGmisc/
https://github.com/R-Computing-Lab/BGmisc/issues

2 Contents

Contents
adjustKidsPerCouple . 3
allGens . 3
assignCoupleIds . 4
buildBetweenGenerations . 4
buildWithinGenerations . 6
calculateH . 7
calculateRelatedness . 7
checkIDs . 9
checkSex . 10
comp2vech . 11
createGenDataFrame . 12
determineSex . 12
dropLink . 13
evenInsert . 14
famSizeCal . 15
fitComponentModel . 15
hazard . 16
identifyComponentModel . 17
inbreeding . 18
inferRelatedness . 19
makeInbreeding . 20
makeTwins . 21
markPotentialChildren . 21
ped2add . 22
ped2ce . 23
ped2cn . 24
ped2com . 25
ped2fam . 26
ped2graph . 27
ped2maternal . 28
ped2mit . 29
ped2paternal . 30
plotPedigree . 31
potter . 32
readGedcom . 33
recodeSex . 34
relatedness . 35
related_coef . 36
repairIDs . 37
repairSex . 37
resample . 38
SimPed . 39
simulatePedigree . 40
sizeAllGens . 41
summarizeFamilies . 42
summarizeMatrilines . 43

adjustKidsPerCouple 3

summarizePatrilines . 44
summarizePedigrees . 45
vech . 47

Index 48

adjustKidsPerCouple Generate or Adjust Number of Kids per Couple Based on Mating Rate

Description

This function generates or adjusts the number of kids per couple in a generation based on the
specified average and whether the count should be randomly determined.

Usage

adjustKidsPerCouple(nMates, kpc, rd_kpc)

Arguments

nMates Integer, the number of mated pairs in the generation.

kpc Number of kids per couple. An integer >= 2 that determines how many kids each
fertilized mated couple will have in the pedigree. Default value is 3. Returns an
error when kpc equals 1.

rd_kpc logical. If TRUE, the number of kids per mate will be randomly generated from
a poisson distribution with mean kpc. If FALSE, the number of kids per mate
will be fixed at kpc.

Value

A numeric vector with the generated or adjusted number of kids per couple.

allGens allGens A function to calculate the number of individuals in each gen-
eration. This is a supporting function for simulatePedigree.

Description

allGens A function to calculate the number of individuals in each generation. This is a supporting
function for simulatePedigree.

Usage

allGens(kpc, Ngen, marR)

4 buildBetweenGenerations

Arguments

kpc Number of kids per couple (integer >= 2).

Ngen Number of generations (integer >= 1).

marR Mating rate (numeric value ranging from 0 to 1).

Value

Returns a vector containing the number of individuals in every generation.

assignCoupleIds Assign Couple IDs

Description

This subfunction assigns a unique couple ID to each mated pair in the generation. Unmated indi-
viduals are assigned NA for their couple ID.

Usage

assignCoupleIds(df_Ngen)

Arguments

df_Ngen The dataframe for the current generation, including columns for individual IDs
and spouse IDs.

Value

The input dataframe augmented with a ’coupleId’ column, where each mated pair has a unique
identifier.

buildBetweenGenerations

Process Generation Connections

Description

This function processes connections between each two generations in a pedigree simulation. It
marks individuals as parents, sons, or daughters based on their generational position and rela-
tionships. The function also handles the assignment of couple IDs, manages single and coupled
individuals, and establishes parent-offspring links across generations.

buildBetweenGenerations 5

Usage

buildBetweenGenerations(
df_Fam,
Ngen,
sizeGens,
verbose,
marR,
sexR,
kpc,
rd_kpc

)

Arguments

df_Fam A data frame containing the simulated pedigree information up to the current
generation. Must include columns for family ID, individual ID, generation num-
ber, spouse ID (spID), and sex. This data frame is updated in place to include
flags for parental status (ifparent), son status (ifson), and daughter status (ifdau),
as well as couple IDs.

Ngen Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

sizeGens A numeric vector containing the sizes of each generation within the pedigree.

verbose logical If TRUE, print progress through stages of algorithm

marR Mating rate. A numeric value ranging from 0 to 1 which determines the pro-
portion of mated (fertilized) couples in the pedigree within each generation. For
instance, marR = 0.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.

sexR Sex ratio of offspring. A numeric value ranging from 0 to 1 that determines the
proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

kpc Number of kids per couple. An integer >= 2 that determines how many kids each
fertilized mated couple will have in the pedigree. Default value is 3. Returns an
error when kpc equals 1.

rd_kpc logical. If TRUE, the number of kids per mate will be randomly generated from
a poisson distribution with mean kpc. If FALSE, the number of kids per mate
will be fixed at kpc.

Details

The function iterates through each generation, starting from the second, to establish connections
based on mating and parentage. For the first generation, it sets the parental status directly. For
subsequent generations, it calculates the number of couples, the expected number of offspring,
and assigns offspring to parents. It handles gender-based assignments for sons and daughters, and
deals with the nuances of single individuals and couple formation. The function relies on external
functions ‘assignCoupleIds‘ and ‘adjustKidsPerCouple‘ to handle specific tasks related to couple
ID assignment and offspring number adjustments, respectively.

6 buildWithinGenerations

Value

The function updates the ‘df_Fam‘ data frame in place, adding or modifying columns related to
parental and offspring status, as well as assigning unique couple IDs. It does not return a value
explicitly.

buildWithinGenerations

Process Generations for Pedigree Simulation

Description

This function iterates through generations in a pedigree simulation, assigning IDs, creating data
frames, determining sexes, and managing pairing within each generation.

Usage

buildWithinGenerations(sizeGens, marR, sexR, Ngen)

Arguments

sizeGens A numeric vector containing the sizes of each generation within the pedigree.

marR Mating rate. A numeric value ranging from 0 to 1 which determines the pro-
portion of mated (fertilized) couples in the pedigree within each generation. For
instance, marR = 0.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.

sexR Sex ratio of offspring. A numeric value ranging from 0 to 1 that determines the
proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

Ngen Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

Value

A data frame representing the simulated pedigree, including columns for family ID (‘fam‘),

calculateH 7

calculateH Falconer’s Formula

Description

Use Falconer’s formula to solve for H using the observed correlations for two groups of any two
levels of relatednesses.

Usage

calculateH(r1, r2, obsR1, obsR2)

Arguments

r1 Relatedness coefficient of the first group.

r2 Relatedness coefficient of the second group.

obsR1 Observed correlation between members of the first group.

obsR2 Observed correlation between members of the second group.

Details

This generalization of Falconer’s formula provides a method to calculate heritability by using the
observed correlations for two groups of any two relatednesses. This function solves for H using the
formula:

H2 =
obsR1− obsR2

r1− r2

where r1 and r2 are the relatedness coefficients for the first and second group, respectively, and
obsR1 and obsR2 are the observed correlations.

Value

Heritability estimates (‘heritability_estimates‘).

calculateRelatedness Calculate Relatedness Coefficient

Description

This function calculates the relatedness coefficient between two individuals based on their shared
ancestry, as described by Wright (1922).

8 calculateRelatedness

Usage

calculateRelatedness(
generations = 2,
path = NULL,
full = TRUE,
maternal = FALSE,
empirical = FALSE,
segregating = TRUE,
total_a = 6800 * 1e+06,
total_m = 16500,
weight_a = 1,
weight_m = 1,
denom_m = FALSE,
...

)

Arguments

generations Number of generations back of common ancestors the pair share.

path Traditional method to count common ancestry, which is twice the number of
generations removed from common ancestors. If not provided, it is calculated
as 2*generations.

full Logical. Indicates if the kin share both parents at the common ancestor’s gener-
ation. Default is TRUE.

maternal Logical. Indicates if the maternal lineage should be considered in the calcula-
tion.

empirical Logical. Adjusts the coefficient based on empirical data, using the total number
of nucleotides and other parameters.

segregating Logical. Adjusts for segregating genes.

total_a Numeric. Represents the total size of the autosomal genome in terms of nu-
cleotides, used in empirical adjustment. Default is 6800*1000000.

total_m Numeric. Represents the total size of the mitochondrial genome in terms of
nucleotides, used in empirical adjustment. Default is 16500.

weight_a Numeric. Represents the weight of phenotypic influence from additive genetic
variance, used in empirical adjustment.

weight_m Numeric. Represents the weight of phenotypic influence from mitochondrial
effects, used in empirical adjustment.

denom_m Logical. Indicates if ‘total_m‘ and ‘weight_m‘ should be included in the de-
nominator of the empirical adjustment calculation.

... Further named arguments that may be passed to another function.

Details

The relatedness coefficient between two people (b & c) is defined in relation to their common
ancestors: rbc =

∑(
1
2

)n+n′+1
(1 + fa)

checkIDs 9

Value

Relatedness Coefficient (‘coef‘): A measure of the genetic relationship between two individuals.

Examples

Not run:
For full siblings, the relatedness coefficient is expected to be 0.5:
calculateRelatedness(generations = 1, full = TRUE)
For half siblings, the relatedness coefficient is expected to be 0.25:
calculateRelatedness(generations = 1, full = FALSE)

End(Not run)

checkIDs Validates and Optionally Repairs Unique IDs in a Pedigree Dataframe

Description

This function takes a pedigree object and performs two main tasks: 1. Checks for the uniqueness of
individual IDs. 2. Optionally repairs non-unique IDs based on a specified logic.

Usage

checkIDs(ped, verbose = FALSE, repair = FALSE)

Arguments

ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID‘, and
‘momID‘.

verbose A logical flag indicating whether to print progress and validation messages to
the console.

repair A logical flag indicating whether to attempt repairs on non-unique IDs.

Value

Depending on ‘repair‘ value, either returns a list containing validation results or a repaired dataframe

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 2, 3), dadID = c(NA, 1, 1, 2), momID = c(NA, NA, 2, 2))
checkIDs(ped, verbose = TRUE, repair = FALSE)

End(Not run)

10 checkSex

checkSex Validates and Optionally Repairs Sex Coding in a Pedigree Dataframe

Description

This function performs two main tasks: 1. Optionally recodes the ’sex’ variable based on given
codes for males and females. 2. Optionally repairs the sex coding based on specified logic, facili-
tating the accurate construction of genetic pedigrees.

Usage

checkSex(
ped,
code_male = NULL,
code_female = NULL,
verbose = FALSE,
repair = FALSE

)

Arguments

ped A dataframe representing the pedigree data with a ’sex’ column.

code_male The current code used to represent males in the ’sex’ column.

code_female The current code used to represent females in the ’sex’ column. If both are
NULL, no recoding is performed.

verbose A logical flag indicating whether to print progress and validation messages to
the console.

repair A logical flag indicating whether to attempt repairs on the sex coding.

Details

This function uses the terms ’male’ and ’female’ in a biological context, based on chromosomes
and other biologically-based characteristics relevant to genetic studies. This usage is not intended
to negate the personal gender identity of any individual.

We recognize the importance of using language and methodologies that affirm and respect all gen-
der identities. While this function focuses on chromosomal information necessary for constructing
genetic pedigrees, we affirm that gender is a spectrum, encompassing a wide range of identities
beyond the binary. The developers of this package express unequivocal support for folx in the trans-
gender and LGBTQ+ communities. We respect the complexity of gender identity and acknowledge
the distinction between the biological aspect of sex used for genetic analysis (genotype) and the
broader, richer concept of gender identity (phenotype).

Value

Depending on the value of ‘repair‘, either a list containing validation results or a repaired dataframe
is returned.

comp2vech 11

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 3), sex = c("M", "F", "M"))
checkSex(ped, code_male = "M", verbose = TRUE, repair = FALSE)

End(Not run)

comp2vech comp2vech Turn a variance component relatedness matrix into its
half-vectorization

Description

comp2vech Turn a variance component relatedness matrix into its half-vectorization

Usage

comp2vech(x, include.zeros = FALSE)

Arguments

x Relatedness component matrix (can be a matrix, list, or object that inherits from
’Matrix’).

include.zeros logical. Whether to include all-zero rows. Default is FALSE.

Details

This function is a wrapper around the vech function, extending it to allow for blockwise matrices
and specific classes. It facilitates the conversion of a variance component relatedness matrix into a
half-vectorized form.

Value

The half-vectorization of the relatedness component matrix.

Examples

comp2vech(list(matrix(c(1, .5, .5, 1), 2, 2), matrix(1, 2, 2)))

12 determineSex

createGenDataFrame Create Data Frame for Generation

Description

This function creates a data frame for a specific generation within the simulated pedigree. It ini-
tializes the data frame with default values for family ID, individual ID, generation number, paternal
ID, maternal ID, spouse ID, and sex. All individuals are initially set with NA for paternal, maternal,
spouse IDs, and sex, awaiting further assignment.

Usage

createGenDataFrame(sizeGens, genIndex, idGen)

Arguments

sizeGens A numeric vector containing the sizes of each generation within the pedigree.

genIndex An integer representing the current generation index for which the data frame is
being created.

idGen A numeric vector containing the ID numbers to be assigned to individuals in the
current generation.

Value

A data frame representing the initial structure for the individuals in the specified generation before
any relationships (parental, spousal) are defined. The columns include family ID (‘fam‘), individual
ID (‘id‘), generation number (‘gen‘), father’s ID (‘pat‘), mother’s ID (‘mat‘), spouse’s ID (‘spID‘),
and sex (‘sex‘), with NA values for paternal, maternal, and spouse IDs, and sex.

Examples

sizeGens <- c(3, 5, 4) # Example sizes for 3 generations
genIndex <- 2 # Creating data frame for the 2nd generation
idGen <- 101:105 # Example IDs for the 2nd generation
df_Ngen <- createGenDataFrame(sizeGens, genIndex, idGen)
print(df_Ngen)

determineSex Determine Sex of Offspring

Description

This internal function assigns sexes to the offspring in a generation based on the specified sex ratio.

dropLink 13

Usage

determineSex(idGen, sexR)

Arguments

idGen Vector of IDs for the generation.
sexR Numeric value indicating the sex ratio (proportion of males).

Value

Vector of sexes ("M" for male, "F" for female) for the offspring.

dropLink dropLink A function to drop a person from his/her parents in the simu-
lated pedigree data.frame. The person can be dropped by specifying
his/her ID or by specifying the generation which the randomly to-be-
dropped person is in. The function can separate one pedigree into
two pedigrees. Separating into small pieces should be done by run-
ning the function multiple times. This is a supplementary function for
simulatePedigree.

Description

dropLink A function to drop a person from his/her parents in the simulated pedigree data.frame.
The person can be dropped by specifying his/her ID or by specifying the generation which the
randomly to-be-dropped person is in. The function can separate one pedigree into two pedigrees.
Separating into small pieces should be done by running the function multiple times. This is a
supplementary function for simulatePedigree.

Usage

dropLink(
ped,
ID_drop = NA_integer_,
gen_drop = 2,
sex_drop = NA_character_,
n_drop = 1

)

Arguments

ped a pedigree simulated from simulatePedigree function or the same format
ID_drop the ID of the person to be dropped from his/her parents.
gen_drop the generation in which the randomly dropped person is. Will work if ‘ID_drop‘

is not specified.
sex_drop the biological sex of the randomly dropped person.
n_drop the number of times the mutation happens.

14 evenInsert

Value

a pedigree with the dropped person’s ‘dadID‘ and ‘momID‘ set to NA.

evenInsert evenInsert A function to insert m elements evenly into a length n vector.

Description

evenInsert A function to insert m elements evenly into a length n vector.

Usage

evenInsert(m, n, verbose = FALSE)

Arguments

m A numeric vector of length less than or equal to n. The elements to be inserted.

n A numeric vector. The vector into which the elements of m will be inserted.

verbose logical If TRUE, prints additional information. Default is FALSE.

Details

The function takes two vectors, m and n, and inserts the elements of m evenly into n. If the length of
m is greater than the length of n, the vectors are swapped, and the insertion proceeds. The resulting
vector is a combination of m and n, with the elements of m evenly distributed within n.

Value

Returns a numeric vector with the elements of m evenly inserted into n.

See Also

SimPed for the main function that uses this supporting function.

famSizeCal 15

famSizeCal famSizeCal A function to calculate the total number of individuals in a
pedigree given parameters. This is a supporting function for function
simulatePedigree

Description

famSizeCal A function to calculate the total number of individuals in a pedigree given parameters.
This is a supporting function for function simulatePedigree

Usage

famSizeCal(kpc, Ngen, marR)

Arguments

kpc Number of kids per couple (integer >= 2).
Ngen Number of generations (integer >= 1).
marR Mating rate (numeric value ranging from 0 to 1).

Value

Returns a numeric value indicating the total pedigree size.

fitComponentModel fitComponentModel Fit the estimated variance components of a model
to covariance data

Description

fitComponentModel Fit the estimated variance components of a model to covariance data

Usage

fitComponentModel(covmat, ...)

Arguments

covmat The covariance matrix of the raw data, which may be blockwise.
... Comma-separated relatedness component matrices representing the variance com-

ponents of the model.

Details

This function fits the estimated variance components of a model to given covariance data. The rank
of the component matrices is checked to ensure that the variance components are all identified.
Warnings are issued if there are inconsistencies.

16 hazard

Value

A regression (linear model fitted with lm). The coefficients of the regression represent the estimated
variance components.

Examples

Not run:
install.packages("OpenMX")
data(twinData, package = "OpenMx")
sellVars <- c("ht1", "ht2")
mzData <- subset(twinData, zyg %in% c(1), c(selVars, "zyg"))
dzData <- subset(twinData, zyg %in% c(3), c(selVars, "zyg"))

fitComponentModel(
covmat = list(cov(mzData[, selVars], use = "pair"), cov(dzData[, selVars], use = "pair")),
A = list(matrix(1, nrow = 2, ncol = 2), matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2)),
C = list(matrix(1, nrow = 2, ncol = 2), matrix(1, nrow = 2, ncol = 2)),
E = list(diag(1, nrow = 2), diag(1, nrow = 2))

)

End(Not run)

hazard Simulated pedigree with two extended families and an age-related haz-
ard

Description

A dataset simulated to have an age-related hazard. There are two extended families that are sampled
from the same population.

Usage

data(hazard)

Format

A data frame with 43 rows and 14 variables

Details

The variables are as follows:

• FamID: ID of the extended family

• ID: Person identification variable

• sex: Sex of the ID: 1 is female; 0 is male

• dadID: ID of the father

identifyComponentModel 17

• momID: ID of the mother
• affected: logical. Whether the person is affected or not
• DA1: Binary variable signifying the meaninglessness of life
• DA2: Binary variable signifying the fundamental unknowability of existence
• birthYr: Birth year for person
• onsetYr: Year of onset for person
• deathYr: Death year for person
• available: logical. Whether
• Gen: Generation of the person
• proband: logical. Whether the person is a proband or not

identifyComponentModel

identifyComponentModel Determine if a variance components model
is identified

Description

identifyComponentModel Determine if a variance components model is identified

Usage

identifyComponentModel(..., verbose = TRUE)

Arguments

... Comma-separated relatedness component matrices representing the variance com-
ponents of the model.

verbose logical. If FALSE, suppresses messages about identification; TRUE by default.

Details

This function checks the identification status of a given variance components model by examining
the rank of the concatenated matrices of the components. If any components are not identified, their
names are returned in the output.

Value

A list of length 2 containing:

• identified: TRUE if the model is identified, FALSE otherwise.
• nidp: A vector of non-identified parameters, specifying the names of components that are not

simultaneously identified.

Examples

identifyComponentModel(A = list(matrix(1, 2, 2)), C = list(matrix(1, 2, 2)), E = diag(1, 2))

18 inbreeding

inbreeding Artificial pedigree data on eight families with inbreeding

Description

A dataset created purely from imagination that includes several types of inbreeding. Different kinds
of inbreeding occur in each extended family.

Usage

data(inbreeding)

Format

A data frame (and ped object) with 134 rows and 7 variables

Details

The types of inbreeding are as follows:

• Extended Family 1: Sister wives - Children with the same father and different mothers who
are sisters.

• Extended Family 2: Full siblings have children.

• Extended Family 3: Half siblings have children.

• Extended Family 4: First cousins have children.

• Extended Family 5: Father has child with his daughter.

• Extended Family 6: Half sister wives - Children with the same father and different mothers
who are half sisters.

• Extended Family 7: Uncle-niece and Aunt-nephew have children.

• Extended Family 8: A father-son pairs has children with a corresponding mother-daughter
pair.

Although not all of the above structures are technically inbreeding, they aim to test pedigree dia-
gramming and path tracing algorithms.

The variables are as follows:

• ID: Person identification variable

• sex: Sex of the ID: 1 is female; 0 is male

• dadID: ID of the father

• momID: ID of the mother

• FamID: ID of the extended family

• Gen: Generation of the person

• proband: Always FALSE

inferRelatedness 19

inferRelatedness Infer Relatedness Coefficient

Description

This function infers the relatedness coefficient between two groups based on the observed correla-
tion between their additive genetic variance and shared environmental variance.

Usage

inferRelatedness(obsR, aceA = 0.9, aceC = 0, sharedC = 0)

Arguments

obsR Numeric. Observed correlation between the two groups. Must be between -1
and 1.

aceA Numeric. Proportion of variance attributable to additive genetic variance. Must
be between 0 and 1. Default is 0.9.

aceC Numeric. Proportion of variance attributable to shared environmental variance.
Must be between 0 and 1. Default is 0.

sharedC Numeric. Proportion of shared environment shared between the two individuals.
Must be between 0 and 1. Default is 0.

Details

The function uses the ACE (Additive genetic, Common environmental, and Unique environmental)
model to infer the relatedness between two individuals or groups. By considering the observed cor-
relation (‘obsR‘), the proportion of variance attributable to additive genetic variance (‘aceA‘), and
the proportion of shared environmental variance (‘aceC‘), it calculates the relatedness coefficient.

Value

Numeric. The calculated relatedness coefficient (‘est_r‘).

Examples

Not run:
Infer the relatedness coefficient:
inferRelatedness(obsR = 0.5, aceA = 0.9, aceC = 0, sharedC = 0)

End(Not run)

20 makeInbreeding

makeInbreeding makeInbreeding A function to create inbred mates in the simulated
pedigree data.frame. Inbred mates can be created by specify-
ing their IDs or the generation the inbred mate should be created.
When specifying the generation, inbreeding between siblings or 1st
cousin needs to be specified. This is a supplementary function for
simulatePedigree.

Description

makeInbreeding A function to create inbred mates in the simulated pedigree data.frame. Inbred
mates can be created by specifying their IDs or the generation the inbred mate should be created.
When specifying the generation, inbreeding between siblings or 1st cousin needs to be specified.
This is a supplementary function for simulatePedigree.

Usage

makeInbreeding(
ped,
ID_mate1 = NA_integer_,
ID_mate2 = NA_integer_,
verbose = FALSE,
gen_inbred = 2,
type_inbred = "sib"

)

Arguments

ped A data.frame in the same format as the output of simulatePedigree.
ID_mate1 A vector of ID of the first mate. If not provided, the function will randomly

select two individuals from the second generation.
ID_mate2 A vector of ID of the second mate.
verbose logical. If TRUE, print progress through stages of algorithm
gen_inbred A vector of generation of the twin to be imputed.
type_inbred A character vector indicating the type of inbreeding. "sib" for sibling inbreeding

and "cousin" for cousin inbreeding.

Details

This function creates inbred mates in the simulated pedigree data.frame. This function’s purpose
is to evaluate the effect of inbreeding on model fitting and parameter estimation. In case it needs to
be said, we do not condone inbreeding in real life. But we recognize that it is a common practice in
some fields to create inbred strains for research purposes.

Value

Returns a data.frame with some inbred mates.

makeTwins 21

makeTwins makeTwins A function to impute twins in the simulated pedigree
data.frame. Twins can be imputed by specifying their IDs or by spec-
ifying the generation the twin should be imputed. This is a supplemen-
tary function for simulatePedigree.

Description

makeTwins A function to impute twins in the simulated pedigree data.frame. Twins can be im-
puted by specifying their IDs or by specifying the generation the twin should be imputed. This is a
supplementary function for simulatePedigree.

Usage

makeTwins(
ped,
ID_twin1 = NA_integer_,
ID_twin2 = NA_integer_,
gen_twin = 2,
verbose = FALSE

)

Arguments

ped A data.frame in the same format as the output of simulatePedigree.

ID_twin1 A vector of ID of the first twin.

ID_twin2 A vector of ID of the second twin.

gen_twin A vector of generation of the twin to be imputed.

verbose logical. If TRUE, print progress through stages of algorithm

Value

Returns a data.frame with MZ twins information added as a new column.

markPotentialChildren Mark and Assign children

Description

This subfunction marks individuals in a generation as potential sons, daughters, or parents based
on their relationships and assigns unique couple IDs. It processes the assignment of roles and
relationships within and between generations in a pedigree simulation.

22 ped2add

Usage

markPotentialChildren(df_Ngen, i, Ngen, sizeGens, CoupleF)

Arguments

df_Ngen A data frame for the current generation being processed. It must include columns
for individual IDs (‘id‘), spouse IDs (‘spID‘), sex (‘sex‘), and any previously as-
signed roles (‘ifparent‘, ‘ifson‘, ‘ifdau‘).

i Integer, the index of the current generation being processed.

Ngen Integer, the total number of generations in the simulation.

sizeGens Numeric vector, containing the size (number of individuals) of each generation.

CoupleF Integer, IT MIGHT BE the number of couples in the current generation.

Value

Modifies ‘df_Ngen‘ in place by updating or adding columns related to individual roles (‘ifparent‘,
‘ifson‘, ‘ifdau‘) and couple IDs (‘coupleId‘). The updated data frame is also returned for integration
into the larger pedigree data frame (‘df_Fam‘).

ped2add Take a pedigree and turn it into an additive genetics relatedness matrix

Description

Take a pedigree and turn it into an additive genetics relatedness matrix

Usage

ped2add(
ped,
max.gen = 25,
sparse = FALSE,
verbose = FALSE,
gc = FALSE,
flatten.diag = FALSE,
standardize.colnames = TRUE,
tcross.alt.crossprod = FALSE,
tcross.alt.star = FALSE

)

ped2ce 23

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns
max.gen the maximum number of generations to compute (e.g., only up to 4th degree

relatives). The default is 25. However it can be set to infinity. ‘Inf‘ uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package
verbose logical. If TRUE, print progress through stages of algorithm
gc logical. If TRUE, do frequent garbage collection via gc to save memory
flatten.diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with

ones
standardize.colnames

logical. If TRUE, standardize the column names of the pedigree dataset
tcross.alt.crossprod

logical. If TRUE, use alternative method of using Crossprod function for com-
puting the transpose

tcross.alt.star

logical. If TRUE, use alternative method of using %*% for computing the
transpose

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2ce Take a pedigree and turn it into an extended environmental relatedness
matrix

Description

Take a pedigree and turn it into an extended environmental relatedness matrix

Usage

ped2ce(ped)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

24 ped2cn

ped2cn Take a pedigree and turn it into a common nuclear environmental re-
latedness matrix

Description

Take a pedigree and turn it into a common nuclear environmental relatedness matrix

Usage

ped2cn(
ped,
max.gen = 25,
sparse = FALSE,
verbose = FALSE,
gc = FALSE,
flatten.diag = FALSE,
standardize.colnames = TRUE,
tcross.alt.crossprod = FALSE,
tcross.alt.star = FALSE

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns
max.gen the maximum number of generations to compute (e.g., only up to 4th degree

relatives). The default is 25. However it can be set to infinity. ‘Inf‘ uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package
verbose logical. If TRUE, print progress through stages of algorithm
gc logical. If TRUE, do frequent garbage collection via gc to save memory
flatten.diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with

ones
standardize.colnames

logical. If TRUE, standardize the column names of the pedigree dataset
tcross.alt.crossprod

logical. If TRUE, use alternative method of using Crossprod function for com-
puting the transpose

tcross.alt.star

logical. If TRUE, use alternative method of using %*% for computing the
transpose

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2com 25

ped2com Take a pedigree and turn it into a relatedness matrix

Description

Take a pedigree and turn it into a relatedness matrix

Usage

ped2com(
ped,
component,
max.gen = 25,
sparse = FALSE,
verbose = FALSE,
gc = FALSE,
flatten.diag = FALSE,
standardize.colnames = TRUE,
tcross.alt.crossprod = FALSE,
tcross.alt.star = FALSE,
...

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

component character. Which component of the pedigree to return. See Details.

max.gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf‘ uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten.diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones

standardize.colnames

logical. If TRUE, standardize the column names of the pedigree dataset
tcross.alt.crossprod

logical. If TRUE, use alternative method of using Crossprod function for com-
puting the transpose

tcross.alt.star

logical. If TRUE, use alternative method of using %*% for computing the
transpose

... additional arguments to be passed to ped2com

26 ped2fam

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2fam Segment Pedigree into Extended Families

Description

This function adds an extended family ID variable to a pedigree by segmenting that dataset into
independent extended families using the weakly connected components algorithm.

Usage

ped2fam(
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
famID = "famID"

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

famID character. Name of the column to be created in ped for the family ID variable

Details

The general idea of this function is to use person ID, mother ID, and father ID to create an extended
family ID such that everyone with the same family ID is in the same (perhaps very extended)
pedigree. That is, a pair of people with the same family ID have at least one traceable relation of
any length to one another.

This function works by turning the pedigree into a mathematical graph using the igraph package.
Once in graph form, the function uses weakly connected components to search for all possible
relationship paths that could connect anyone in the data to anyone else in the data.

Value

A pedigree dataset with one additional column for the newly created extended family ID

ped2graph 27

ped2graph Turn a pedigree into a graph

Description

Turn a pedigree into a graph

Usage

ped2graph(
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
directed = TRUE,
adjacent = c("parents", "mothers", "fathers")

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

directed Logical scalar. Default is TRUE. Indicates whether or not to create a directed
graph.

adjacent Character. Relationship that defines adjacency in the graph: parents, mothers,
or fathers

Details

The general idea of this function is to represent a pedigree as a graph using the igraph package.

Once in graph form, several common pedigree tasks become much simpler.

The adjacent argument allows for different kinds of graph structures. When using parents for
adjacency, the graph shows all parent-child relationships. When using mother for adjacency, the
graph only shows mother-child relationships. Similarly when using father for adjacency, only
father-child relationships appear in the graph. Construct extended families from the parent graph,
maternal lines from the mothers graph, and paternal lines from the fathers graph.

Value

A graph

28 ped2maternal

ped2maternal Add a maternal line ID variable to a pedigree

Description

Add a maternal line ID variable to a pedigree

Usage

ped2maternal(
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

matID Character. Maternal line ID variable to be created and added to the pedigree

Details

Under various scenarios it is useful to know which people in a pedigree belong to the same maternal
lines. This function first turns a pedigree into a graph where adjacency is defined by mother-child
relationships. Subsequently, the weakly connected components algorithm finds all the separate
maternal lines and gives them an ID variable.

See Also

[ped2fam()] for creating extended family IDs, and [ped2paternal()] for creating paternal line IDs

ped2mit 29

ped2mit Take a pedigree and turn it into a mitochondrial relatedness matrix

Description

Take a pedigree and turn it into a mitochondrial relatedness matrix

Usage

ped2mit(
ped,
max.gen = 25,
sparse = FALSE,
verbose = FALSE,
gc = FALSE,
flatten.diag = FALSE,
standardize.colnames = TRUE,
tcross.alt.crossprod = FALSE,
tcross.alt.star = FALSE

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns
max.gen the maximum number of generations to compute (e.g., only up to 4th degree

relatives). The default is 25. However it can be set to infinity. ‘Inf‘ uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package
verbose logical. If TRUE, print progress through stages of algorithm
gc logical. If TRUE, do frequent garbage collection via gc to save memory
flatten.diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with

ones
standardize.colnames

logical. If TRUE, standardize the column names of the pedigree dataset
tcross.alt.crossprod

logical. If TRUE, use alternative method of using Crossprod function for com-
puting the transpose

tcross.alt.star

logical. If TRUE, use alternative method of using %*% for computing the
transpose

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

30 ped2paternal

ped2paternal Add a paternal line ID variable to a pedigree

Description

Add a paternal line ID variable to a pedigree

Usage

ped2paternal(
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
patID = "patID"

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

patID Character. Paternal line ID variable to be created and added to the pedigree

Details

Under various scenarios it is useful to know which people in a pedigree belong to the same paternal
lines. This function first turns a pedigree into a graph where adjacency is defined by father-child
relationships. Subsequently, the weakly connected components algorithm finds all the separate
paternal lines and gives them an ID variable.

See Also

[ped2fam()] for creating extended family IDs, and [ped2maternal()] for creating maternal line IDs

plotPedigree 31

plotPedigree plotPedigree A wrapped function to plot simulated pedigree from func-
tion simulatePedigree. This function require the installation of
package kinship2.

Description

plotPedigree A wrapped function to plot simulated pedigree from function simulatePedigree.
This function require the installation of package kinship2.

Usage

plotPedigree(
ped,
code_male = NULL,
verbose = FALSE,
affected = NULL,
cex = 0.5,
col = 1,
symbolsize = 1,
branch = 0.6,
packed = TRUE,
align = c(1.5, 2),
width = 8,
density = c(-1, 35, 65, 20),
mar = c(2.1, 1, 2.1, 1),
angle = c(90, 65, 40, 0),
keep.par = FALSE,
pconnect = 0.5,
...

)

Arguments

ped The simulated pedigree data.frame from function simulatePedigree. Or a
pedigree dataframe with the same colnames as the dataframe simulated from
function simulatePedigree.

code_male This optional input allows you to indicate what value in the sex variable codes
for male. Will be recoded as "M" (Male). If NULL, no recoding is performed.

verbose logical If TRUE, prints additional information. Default is FALSE.

affected This optional parameter can either be a string specifying the column name that
indicates affected status or a numeric/logical vector of the same length as the
number of rows in ’ped’. If NULL, no affected status is assigned.

cex The font size of the IDs for each individual in the plot.

col color for each id. Default assigns the same color to everyone.

32 potter

symbolsize controls symbolsize. Default=1.

branch defines how much angle is used to connect various levels of nuclear families.

packed default=T. If T, uniform distance between all individuals at a given level.

align these parameters control the extra effort spent trying to align children underneath
parents, but without making the pedigree too wide. Set to F to speed up plotting.

width default=8. For a packed pedigree, the minimum width allowed in the realign-
ment of pedigrees.

density defines density used in the symbols. Takes up to 4 different values.

mar margin parmeters, as in the par function

angle defines angle used in the symbols. Takes up to 4 different values.

keep.par Default = F, allows user to keep the parameter settings the same as they were for
plotting (useful for adding extras to the plot)

pconnect when connecting parent to children the program will try to make the connecting
line as close to vertical as possible, subject to it lying inside the endpoints of the
line that connects the children by at least pconnect people. Setting this option
to a large number will force the line to connect at the midpoint of the children.

... Extra options that feed into the plot function.

Value

A plot of the provided pedigree

potter Fictional pedigree data on a wizarding family

Description

A dataset created purely from imagination that includes a subset of the Potter extended family.

Usage

data(potter)

Format

A data frame (and ped object) with 36 rows and 8 variables

Details

The variables are as follows:

• personID: Person identification variable

• famID: Family identification variable

• name: Name of the person

readGedcom 33

• gen: Generation of the person

• momID: ID of the mother

• dadID: ID of the father

• spouseID: ID of the spouse

• sex: Sex of the ID: 1 is male; 0 is female

IDs in the 100s momIDs and dadIDs are for people not in the dataset.

readGedcom Read a GEDCOM File

Description

This function reads a GEDCOM file and parses it into a structured data frame of individuals. In-
spired by https://raw.githubusercontent.com/jjfitz/readgedcom/master/R/read_gedcom.R

Usage

readGedcom(
file_path,
verbose = FALSE,
add_parents = TRUE,
remove_empty_cols = TRUE,
combine_cols = TRUE,
skinny = FALSE

)

Arguments

file_path The path to the GEDCOM file.

verbose A logical value indicating whether to print messages.

add_parents A logical value indicating whether to add parents to the data frame.
remove_empty_cols

A logical value indicating whether to remove columns with all missing values.

combine_cols A logical value indicating whether to combine columns with duplicate values.

skinny A logical value indicating whether to return a skinny data frame.

Value

A data frame containing information about individuals, with the following potential columns: -
‘id‘: ID of the individual - ‘momID‘: ID of the individual’s mother - ‘dadID‘: ID of the individual’s
father - ‘sex‘: Sex of the individual - ‘name‘: Full name of the individual - ‘name_given‘: First
name of the individual - ‘name_surn‘: Last name of the individual - ‘name_marriedsurn‘: Married
name of the individual - ‘name_nick‘: Nickname of the individual - ‘name_npfx‘: Name prefix -
‘name_nsfx‘: Name suffix - ‘birth_date‘: Birth date of the individual - ‘birth_lat‘: Latitude of the

34 recodeSex

birthplace - ‘birth_long‘: Longitude of the birthplace - ‘birth_place‘: Birthplace of the individual -
‘death_caus‘: Cause of death - ‘death_date‘: Death date of the individual - ‘death_lat‘: Latitude of
the place of death - ‘death_long‘: Longitude of the place of death - ‘death_place‘: Place of death of
the individual - ‘attribute_caste‘: Caste of the individual - ‘attribute_children‘: Number of children
of the individual - ‘attribute_description‘: Description of the individual - ‘attribute_education‘:
Education of the individual - ‘attribute_idnumber‘: Identification number of the individual - ‘at-
tribute_marriages‘: Number of marriages of the individual - ‘attribute_nationality‘: Nationality of
the individual - ‘attribute_occupation‘: Occupation of the individual - ‘attribute_property‘: Prop-
erty owned by the individual - ‘attribute_religion‘: Religion of the individual - ‘attribute_residence‘:
Residence of the individual - ‘attribute_ssn‘: Social security number of the individual - ‘attribute_title‘:
Title of the individual - ‘FAMC‘: ID(s) of the family where the individual is a child - ‘FAMS‘: ID(s)
of the family where the individual is a spouse

recodeSex Recodes Sex Variable in a Pedigree Dataframe

Description

This function serves as is primarily used internally, by plotting functions etc. It sets the ‘repair‘ flag
to TRUE automatically and forwards any additional parameters to ‘checkSex‘.

Usage

recodeSex(
ped,
verbose = FALSE,
code_male = NULL,
code_na = NULL,
code_female = NULL,
recode_male = "M",
recode_female = "F",
recode_na = NA_character_

)

Arguments

ped A dataframe representing the pedigree data with a ’sex’ column.

verbose A logical flag indicating whether to print progress and validation messages to
the console.

code_male The current code used to represent males in the ’sex’ column.

code_na The current value used for missing values.

code_female The current code used to represent females in the ’sex’ column. If both are
NULL, no recoding is performed.

recode_male The value to use for males. Default is "M"

recode_female The value to use for females. Default is "F"

recode_na The value to use for missing values. Default is NA_character_

relatedness 35

Details

This function uses the terms ’male’ and ’female’ in a biological context, based on chromosomes
and other biologically-based characteristics relevant to genetic studies. This usage is not intended
to negate the personal gender identity of any individual.

We recognize the importance of using language and methodologies that affirm and respect all gen-
der identities. While this function focuses on chromosomal information necessary for constructing
genetic pedigrees, we affirm that gender is a spectrum, encompassing a wide range of identities
beyond the binary. The developers of this package express unequivocal support for folx in the trans-
gender and LGBTQ+ communities. We respect the complexity of gender identity and acknowledge
the distinction between the biological aspect of sex used for genetic analysis (genotype) and the
broader, richer concept of gender identity (phenotype).

Value

A modified version of the input data.frame ped, containing an additional or modified ’sex_recode’
column where the ’sex’ values are recoded according to code_male. NA values in the ’sex’ column
are preserved.

See Also

plotPedigree

relatedness relatedness (Deprecated)

Description

When calling this function, a warning will be issued about its deprecation.

Usage

relatedness(...)

Arguments

... Arguments to be passed to ‘inferRelatedness‘.

Details

This function is a wrapper around the new ‘inferRelatedness‘ function. ‘relatedness‘ has been
deprecated, and it’s advised to use ‘inferRelatedness‘ directly.

Value

The same result as calling ‘inferRelatedness‘.

36 related_coef

See Also

inferRelatedness for the updated function.

Examples

Not run:
This is an example of the deprecated function:
relatedness(...)
It is recommended to use:
inferRelatedness(...)

End(Not run)

related_coef related_coef (Deprecated)

Description

When calling this function, a warning will be issued about its deprecation.

Usage

related_coef(...)

Arguments

... Arguments to be passed to ‘calculateRelatedness‘.

Details

This function is a wrapper around the new ‘calculateRelatedness‘ function. ‘related_coef‘ has been
deprecated, and it’s advised to use ‘calculateRelatedness‘ directly.

Value

The same result as calling ‘calculateRelatedness‘.

See Also

calculateRelatedness for the updated function.

Examples

Not run:
This is an example of the deprecated function:
related_coef(...)
It is recommended to use:
calculateRelatedness(...)

End(Not run)

repairIDs 37

repairIDs Repair Missing IDs

Description

This function repairs missing IDs in a pedigree.

Usage

repairIDs(ped, verbose = FALSE)

Arguments

ped A pedigree object

verbose A logical indicating whether to print progress messages

Value

A corrected pedigree

repairSex Repairs Sex Coding in a Pedigree Dataframe

Description

This function serves as a wrapper around ‘checkSex‘ to specifically handle the repair of the sex
coding in a pedigree dataframe.

Usage

repairSex(ped, verbose = FALSE, code_male = NULL)

Arguments

ped A dataframe representing the pedigree data with a ’sex’ column.

verbose A logical flag indicating whether to print progress and validation messages to
the console.

code_male The current code used to represent males in the ’sex’ column.

38 resample

Details

This function uses the terms ’male’ and ’female’ in a biological context, based on chromosomes
and other biologically-based characteristics relevant to genetic studies. This usage is not intended
to negate the personal gender identity of any individual.

We recognize the importance of using language and methodologies that affirm and respect all gen-
der identities. While this function focuses on chromosomal information necessary for constructing
genetic pedigrees, we affirm that gender is a spectrum, encompassing a wide range of identities
beyond the binary. The developers of this package express unequivocal support for folx in the trans-
gender and LGBTQ+ communities. We respect the complexity of gender identity and acknowledge
the distinction between the biological aspect of sex used for genetic analysis (genotype) and the
broader, richer concept of gender identity (phenotype).

Value

A modified version of the input data.frame ped, containing an additional or modified ’sex_recode’
column where the ’sex’ values are recoded according to code_male. NA values in the ’sex’ column
are preserved.

See Also

checkSex

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 3), sex = c("M", "F", "M"))
repairSex(ped, code_male = "M", verbose = TRUE)

End(Not run)

resample Resample Elements of a Vector

Description

This function performs resampling of the elements in a vector ‘x‘. It randomly shuffles the elements
of ‘x‘ and returns a vector of the resampled elements. If ‘x‘ is empty, it returns ‘NA_integer_‘.

Usage

resample(x, ...)

Arguments

x A vector containing the elements to be resampled. If ‘x‘ is empty, the function
will return ‘NA_integer_‘.

... Additional arguments passed to ‘sample.int‘, such as ‘size‘ for the number of
items to sample and ‘replace‘ indicating whether sampling should be with re-
placement.

SimPed 39

Value

A vector of resampled elements from ‘x‘. If ‘x‘ is empty, returns ‘NA_integer_‘. The length and
type of the returned vector depend on the input vector ‘x‘ and the additional arguments provided
via ‘...‘.

SimPed SimPed (Deprecated)

Description

When calling this function, a warning will be issued about its deprecation.

Usage

SimPed(...)

Arguments

... Arguments to be passed to ‘simulatePedigree‘.

Details

This function is a wrapper around the new ‘simulatePedigree‘ function. ‘SimPed‘ has been depre-
cated, and it’s advised to use ‘simulatePedigree‘ directly.

Value

The same result as calling ‘simulatePedigree‘.

See Also

simulatePedigree for the updated function.

Examples

Not run:
This is an example of the deprecated function:
SimPed(...)
It is recommended to use:
simulatePedigree(...)

End(Not run)

40 simulatePedigree

simulatePedigree Simulate Pedigrees This function simulates "balanced" pedigrees
based on a group of parameters: 1) k - Kids per couple; 2) G - Number
of generations; 3) p - Proportion of males in offspring; 4) r - Mating
rate.

Description

Simulate Pedigrees This function simulates "balanced" pedigrees based on a group of parameters:
1) k - Kids per couple; 2) G - Number of generations; 3) p - Proportion of males in offspring; 4) r -
Mating rate.

Usage

simulatePedigree(
kpc = 3,
Ngen = 4,
sexR = 0.5,
marR = 2/3,
rd_kpc = FALSE,
balancedSex = TRUE,
balancedMar = TRUE,
verbose = FALSE

)

Arguments

kpc Number of kids per couple. An integer >= 2 that determines how many kids each
fertilized mated couple will have in the pedigree. Default value is 3. Returns an
error when kpc equals 1.

Ngen Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

sexR Sex ratio of offspring. A numeric value ranging from 0 to 1 that determines the
proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

marR Mating rate. A numeric value ranging from 0 to 1 which determines the pro-
portion of mated (fertilized) couples in the pedigree within each generation. For
instance, marR = 0.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.

rd_kpc logical. If TRUE, the number of kids per mate will be randomly generated from
a poisson distribution with mean kpc. If FALSE, the number of kids per mate
will be fixed at kpc.

balancedSex Not fully developed yet. Always TRUE in the current version.
balancedMar Not fully developed yet. Always TRUE in the current version.
verbose logical If TRUE, print progress through stages of algorithm

sizeAllGens 41

Value

A data.frame with each row representing a simulated individual. The columns are as follows:

• fam: The family id of each simulated individual. It is ’fam1’ in a single simulated pedigree.

• ID: The unique personal ID of each simulated individual. The first digit is the fam id; the
fourth digit is the generation the individual is in; the following digits represent the order of the
individual within his/her pedigree. For example, 100411 suggests this individual has a family
id of 1, is in the 4th generation, and is the 11th individual in the 4th generation.

• gen: The generation the simulated individual is in.

• dadID: Personal ID of the individual’s father.

• momID: Personal ID of the individual’s mother.

• spID: Personal ID of the individual’s mate.

• sex: Biological sex of the individual. F - female; M - male.

sizeAllGens sizeAllGens An internal supporting function for simulatePedigree.

Description

sizeAllGens An internal supporting function for simulatePedigree.

Usage

sizeAllGens(kpc, Ngen, marR)

Arguments

kpc Number of kids per couple (integer >= 2).

Ngen Number of generations (integer >= 1).

marR Mating rate (numeric value ranging from 0 to 1).

Value

Returns a vector including the number of individuals in every generation.

42 summarizeFamilies

summarizeFamilies Summarize the families in a pedigree

Description

Summarize the families in a pedigree

Usage

summarizeFamilies(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID",
patID = "patID",
byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

famID character. Name of the column to be created in ped for the family ID variable

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

matID Character. Maternal line ID variable to be created and added to the pedigree

patID Character. Paternal line ID variable to be created and added to the pedigree

byr Optional column name for birth year.
founder_sort_var

The variable to sort the founders by. If NULL, the founders will be sorted by
birth year (‘byr‘) if that’s present and by ‘personID‘ otherwise.

include_founder

Logical, if TRUE, include the founder of each line in the summary statistics.

nbiggest The number of biggest lines to return.

noldest The number of oldest lines to return.

summarizeMatrilines 43

skip_var A character vector of variables to skip when calculating summary statistics.
five_num_summary

Logical, if TRUE, include the 5-number summary (min, Q1, median, Q3, max)
in the summary statistics.

verbose Logical, if TRUE, print progress messages.

See Also

[summarizePedigrees ()]

summarizeMatrilines Summarize the maternal lines in a pedigree

Description

Summarize the maternal lines in a pedigree

Usage

summarizeMatrilines(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID",
patID = "patID",
byr = NULL,
include_founder = FALSE,
founder_sort_var = NULL,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

famID character. Name of the column to be created in ped for the family ID variable

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

matID Character. Maternal line ID variable to be created and added to the pedigree

44 summarizePatrilines

patID Character. Paternal line ID variable to be created and added to the pedigree

byr Optional column name for birth year.
include_founder

Logical, if TRUE, include the founder of each line in the summary statistics.
founder_sort_var

The variable to sort the founders by. If NULL, the founders will be sorted by
birth year (‘byr‘) if that’s present and by ‘personID‘ otherwise.

nbiggest The number of biggest lines to return.

noldest The number of oldest lines to return.

skip_var A character vector of variables to skip when calculating summary statistics.
five_num_summary

Logical, if TRUE, include the 5-number summary (min, Q1, median, Q3, max)
in the summary statistics.

verbose Logical, if TRUE, print progress messages.

See Also

[summarizePedigrees ()]

summarizePatrilines Summarize the paternal lines in a pedigree

Description

Summarize the paternal lines in a pedigree

Usage

summarizePatrilines(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID",
patID = "patID",
byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

)

summarizePedigrees 45

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

famID character. Name of the column to be created in ped for the family ID variable

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

matID Character. Maternal line ID variable to be created and added to the pedigree

patID Character. Paternal line ID variable to be created and added to the pedigree

byr Optional column name for birth year.
founder_sort_var

The variable to sort the founders by. If NULL, the founders will be sorted by
birth year (‘byr‘) if that’s present and by ‘personID‘ otherwise.

include_founder

Logical, if TRUE, include the founder of each line in the summary statistics.

nbiggest The number of biggest lines to return.

noldest The number of oldest lines to return.

skip_var A character vector of variables to skip when calculating summary statistics.
five_num_summary

Logical, if TRUE, include the 5-number summary (min, Q1, median, Q3, max)
in the summary statistics.

verbose Logical, if TRUE, print progress messages.

See Also

[summarizePedigrees ()]

summarizePedigrees Summarize Pedigree Data

Description

This function summarizes pedigree data, including calculating summary statistics for all numeric
variables, and finding the originating member for each family, maternal, and paternal line.

Usage

summarizePedigrees(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID",

46 summarizePedigrees

patID = "patID",
type = c("fathers", "mothers", "families"),
byr = NULL,
include_founder = FALSE,
founder_sort_var = NULL,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

famID character. Name of the column to be created in ped for the family ID variable

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

matID Character. Maternal line ID variable to be created and added to the pedigree

patID Character. Paternal line ID variable to be created and added to the pedigree

type The type of summary statistics to calculate. Options are "fathers", "mothers",
and "families".

byr Optional column name for birth year.
include_founder

Logical, if TRUE, include the founder of each line in the summary statistics.
founder_sort_var

The variable to sort the founders by. If NULL, the founders will be sorted by
birth year (‘byr‘) if that’s present and by ‘personID‘ otherwise.

nbiggest The number of biggest lines to return.

noldest The number of oldest lines to return.

skip_var A character vector of variables to skip when calculating summary statistics.
five_num_summary

Logical, if TRUE, include the 5-number summary (min, Q1, median, Q3, max)
in the summary statistics.

verbose Logical, if TRUE, print progress messages.

Value

A data.frame (or list) containing summary statistics for family, maternal, and paternal lines, as well
as the 5 oldest and biggest lines.

vech 47

vech vech Create the half-vectorization of a matrix

Description

vech Create the half-vectorization of a matrix

Usage

vech(x)

Arguments

x a matrix, the half-vectorization of which is desired

Details

This function returns the vectorized form of the lower triangle of a matrix, including the diagonal.
The upper triangle is ignored with no checking that the provided matrix is symmetric.

Value

A vector containing the lower triangle of the matrix, including the diagonal.

Examples

vech(matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2))

Index

∗ datasets
hazard, 16
inbreeding, 18
potter, 32

∗ deprecated
related_coef, 36
relatedness, 35
SimPed, 39

adjustKidsPerCouple, 3
allGens, 3
assignCoupleIds, 4

buildBetweenGenerations, 4
buildWithinGenerations, 6

calculateH, 7
calculateRelatedness, 7, 36
checkIDs, 9
checkSex, 10, 38
comp2vech, 11
createGenDataFrame, 12

determineSex, 12
dropLink, 13

evenInsert, 14

famSizeCal, 15
fitComponentModel, 15

gc, 23–25, 29

hazard, 16

identifyComponentModel, 17
inbreeding, 18
inferRelatedness, 19, 36

makeInbreeding, 20
makeTwins, 21

markPotentialChildren, 21

ped2add, 22
ped2ce, 23
ped2cn, 24
ped2com, 25, 25
ped2fam, 26
ped2graph, 27
ped2maternal, 28
ped2mit, 29
ped2mt (ped2mit), 29
ped2paternal, 30
plotPedigree, 31, 35
potter, 32

readGedcom, 33
recodeSex, 34
related_coef, 36
relatedness, 35
repairIDs, 37
repairSex, 37
resample, 38

SimPed, 14, 39
simulatePedigree, 39, 40
sizeAllGens, 41
summarizeFamilies, 42
summarizeMatrilines, 43
summarizePatrilines, 44
summarizePedigrees, 45

vech, 47

48

	adjustKidsPerCouple
	allGens
	assignCoupleIds
	buildBetweenGenerations
	buildWithinGenerations
	calculateH
	calculateRelatedness
	checkIDs
	checkSex
	comp2vech
	createGenDataFrame
	determineSex
	dropLink
	evenInsert
	famSizeCal
	fitComponentModel
	hazard
	identifyComponentModel
	inbreeding
	inferRelatedness
	makeInbreeding
	makeTwins
	markPotentialChildren
	ped2add
	ped2ce
	ped2cn
	ped2com
	ped2fam
	ped2graph
	ped2maternal
	ped2mit
	ped2paternal
	plotPedigree
	potter
	readGedcom
	recodeSex
	relatedness
	related_coef
	repairIDs
	repairSex
	resample
	SimPed
	simulatePedigree
	sizeAllGens
	summarizeFamilies
	summarizeMatrilines
	summarizePatrilines
	summarizePedigrees
	vech
	Index

